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COLLISION OF PLANE, VISCOUS, MULTILAYERED JETS 

M. V. Rubtsov UDC 532.522+532.526 

In order to determine the differences in real flow with high-speed collision of metallic 
plates from known [i, 2] inviscid flow, Rubtsov [3] considered the problem of symmetric im- 
pingement of plane viscous jets with free boundary. The problem is solved approximately as- 
suming boundary-layer corrections to inviscid flow near the free boundaries at sufficiently 
large Reynolds numbers. A solution is obtained to the first approximation from simplified 
correction w(%~) to the inviscid velocity u0(%~) along the stream line. The simplified 
equation is obtained from Navier--Stokes equations by carrying out order-of-magnitude analysis. 
It is of interest to use this method to study the problem of jet collision when each jet com- 
prises a number of layers with different viscosity but the same density. 

i. Consider stationary inviscid flow in the region shown in Fig. i. Two jets of equal 
thickness h flow from infinity with the same velocity U at an angle y to the axis of symmetry. 
The x axis is along the axis of symmetry. Consider half the flow region. The free jet con- 
sists of N layers of equal density 0 and different viscosity ~l and thickness ~Z, Z = i, 2, 

N 
..., N, ~6~=h �9 The flow region is limited by the x axis and two free boundaries E: and 

l=l 

E2. There are N -- 1 boundaries in the flow region F1, F2, ..., FN-~. The velocity compo- 
nents along x and y are denoted by u and v. Normalizing x and y by h, u, v by U, and pressure 
p by pU 2, Navier--Stokes equations are written in the form 

Ou l Ou l Op! ,l 
ul- 'b- ~- + vt 09 = - -  0--7- + "~-el Aut '  ( 1 . 1 )  

Ov l Ov l Op! I 
uz --bT" + vz ou o~- + ~ Avz,  

J /11  
f 

Fig. 1 
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Ou l Ovl pUh 
O~ + - ~ - - = 0 ,  Re~--  ~ , / ~ 1 , 2  . . . . .  N .  

Boundary conditions at I, and Za are given in [3]: 

V ] z . n  = 0,  n .  TJz .x  : 0 ,  n . r l z . n  = 0, ( 1 . 2 )  

where n and x are unit vectors of the outward normal and tangent to the boundary Z; V is the 
velocity vector; T is the stress tensor 

T u = --pSz~ + 2~(Ou/ax~ § Ou/OxO, i, ], = t ,  2, 

X 1 = X~ X 2 = ~]~ ~t 1 ~ l t :  U 2 -~. U .  

Boundary conditions on f I are chosen from continuity conditions for velocity vectors and 
stresses 

V]r .n  ---- O, V+Ir .~ ---- V - t r ' ~ ,  . (1.3) 

n ' T + l r  .~ = n . T - ] r  .~, n ' T + I r  .n  = n ' T - l r  .n .  

The problem consists in the determination of functions Ul, vl, and Pl satisfying conditions 
(1.1)-(1.3). 

2. Assuming that functions Ul, Vl, plare sufficiently smooth and as min Rez--~ the 
l 

basic flow becomes inviscid [i, 2], Eqs. (i.i) are written in orthogonal coordinates (% ~), 
where ~ and ~ are the real and imaginary parts of the complex potential of the inviscid flow. 
Dropping the index l, 

= 

Here u and g in (2.1) denote velocity components along the @ and ~ axes, HI and Ha are 
Lame coefficients. If uo is the inviscid flow velocity along the streamline, then H~ = Ha = 
i/uo. 

Simplified equations of motion were obtained in [3] with order-of-magnitude analysis. 
In the present work consider the asymptotic expansion of the solution in powers of e where 
the small parameter ez = 1/Re is negligible at large Re [4-6]. The analysis is limited to 
two-term inner and outer expansions. For the outer expansion, 

u ~ = Uo-t- eu 1, gO_-- g o +  eg 1, pO = p o + e p , ,  ( 2 . 2 )  

where the zeroth approximation uo, go =- 0, and po is the known inviscid potential flow. Sub- 
stituting (2.2) in (2.1) and equating terms of the same order in e, we get first-order ap- 
proximation for the outer expansion 

whence 

u:OUo/Or247 UoOU:/Or = " @ : / 0 %  

a~ o~ @1 o~1/~o @1/% 
Ogl 91,1 ~ I i--9 = -- 

u0~+~ a~ -g a~ %-~' 0~ + a~ 
=0, 

0.% o MI% a V% Og%o p,= a~; " a ~  = O, a---~ + o-----~---- O, uou 1 + O, (2.3) 

i.e., (u I -- igt)/uo is an analytic function. The third equation in (2.3) is obtained from 
parallel-flow condition as ~-~--oo and p1(_~, 4) = 0, u1( -~, 4) = 0. 

Matching zeroth (single-term) approximations of the outer and inner expansions leads to 
ui = uo, gi = 0, Pi = Po [5]. Consider two-term inner expansion 

u~ = u o + ew,  g~ = eg  1 + s~g~, Pl  = Po n t- ePl- 
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Writing incompressible continuity equation in inner variables (%~) 

ag~/u0 0, a~/% agJ% = - - +  ~ =0, 

hence g,/uo = e(~). Since the function g,/uo is a constant inside the boundary layer for ~ = 
const, matching the outer expansion g~ with inner expansion g~ at the outer boundary of the 
boundary layer, we get 

g~(% ~ = %)m0(% ~ = %) = a(r (2.4) 

I t  f o l l o w s  f rom ( 2 . 4 )  t h a t  t he  ha rmon ic  f u n c t i o n  i s  c o n t i n u o u s  a c r o s s  a d j a c e n t  l a y e r s  
t h r o u g h  a l i n e a r  b o u n d a r y  l a y e r  i n  v a r i a b l e s  (% ~ ) a s  E § O. C o n s e q u e n t l y ,  t h e  f u n c t i o n  
gX/uo can  be  a n a l y t i c a l l y  c o n t i n u e d  t h r o u g h  i n n e r  b o u n d a r y  l a y e r s  o v e r  t h e  e n t i r e  f l o w  r e -  
g i o n  [ 7 ] .  I n  t h e  a n a l y t i c a l  c o n t i n u a t i o n  a t  e ach  l a y e r  t h e  h a r m o n i c  f u n c t i o n ,  u~ /uo  i s  d e -  
t e r m i n e d  t o  t h e  a c c u r a c y  o f  t h e  c o n s t a n t ,  though  i t  f o l l o w s  f rom t h e  c o n d i t i o n  u~(~, ~ ) - + 0 ,  
g I ( % ~ ) - + 0  a t  ~ - + - - o o  t h a t  t h i s  c o n s t a n t  e q u a l s  z e r o .  

By w r i t i n g  e q u a t i o n s  o f  m o t i o n  i n  i n n e r  v a r i a b l e s  i t  i s  p o s s i b l e  to  o b t a i n  i n  t h e  l i m i t  
e § 0, 

~1%1 

In  d e r i v i n g  Eq. ( 2 . 5 )  i t  was t a k e n  i n t o  a c c o u n t  t h a t  a U o / ~  -> 0 a s  e § O. 
t h e  t h i r d  b o u n d a r y  c o n d i t i o n  ( 1 . 2 ) ,  w r i t t e n  i n  t he  i n n e r  v a r i a b l e s ,  t h a t  

[po + + (Uo _ = o 

(2.5) 

It follows from 

o r  

O u 0 ~ l  (2.6) 

and i n  t h e  l i m i t  as  ~ § 0 ,  p l l ~  = 0.  S i n c e  P~(q~,~) ~- 0 i n  t h e  b o u n d a r y  l a y e r  a t  t h e  f r e e  
b o u n d a r y ,  t h e n ,  m a t c h i n g  the  o u t e r  e x p a n s i o n  f o r  p r e s s u r e  p .  + ~pl  w i t h  i n n e r  e x p a n s i o n  po + 
c . 0 ,  we g e t ,  a c c o r d i n g  to  Eq. ( 2 . 6 ) ,  

p~h = O. 
Besides, at the outer edge of the boundary layer we have from Eq. (2.3) 

(2.7) 

uo~11zq- 'p l lz  = O. 

Comparing (2.7) and (2.8), we observe that 

(2.8) 

According to the maxima principle for harmonic function 
the entire flow region, we have, in view of Eq. (2.9), 

ul(m, ~)lu0(m, ~), 

(2.9) 

determined in 

u1(q), ~) ~ O. (2.10) 

For the function @1(~,~)/u0(~, ~) conjugate to ul/uo, it is true that 

gl(cp, a~)luo( % "~b) ~-- const, 

and from the condition g~(% ~)-+ 0 as ~-+ --co we have gi(% ~) ~_ 0. 

Using the third equation in (2.3) and (2.10), it is possible to note that, at the outer 
boundaries of inner boundary layers p1(~) = 0 and matching the outer and inner expansions for 
pressure gives Pl(%~)~-0. Then the first equation in (2.5) is written in the form 

a~o 0 ( ~ ~i'-'--o'~ '~"~'% (2.11) 
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Thus, coefficients of first-order terms in e in the asymptotic expansion of the solu- 
tion appear to be zero except w in the inner expansion. Uniformly valid first-order approxi- 
mation in e will be 

u = Uo(~, ~)  + ~(~,  ~), g(~, ~) --=- o, p(% ~)  = po(~, ~). 

Returning to outer variables, Eq. 

At the free boundary, 

and in the variables 

(2.11) can be written in the form 

OW~ o ~ OZwu o t ~2 wu o 

Ouo/O ~ = 0 and (2.11) takes the form 

(% ~) the equation (2.11) takes the form 

(2.12) 

Ow I O~w 
- -  = 

O~ Re O~ ~' 

o b t a i n e d  i n  [3] by o r d e r - o f - m a g n i t u d e  a n a l y s i s  o f  Nav ie r - -S tokes  e q u a t i o n s .  The form of  Eq. 
(2.12) is also convenient because it makes it possible to consider mutual influence of adja- 
cent boundary layers since the distance between boundary layers is finite in outer variables. 

Boundary conditions for Eq. (2.12) are 

~ 0r 0r ] z =0' :W+Ir=W-Ir ,  (2.13) 

I n d i c e s  + or  -- i n  Eq. (2 .13 )  d e n o t e  q u a n t i t i e s  to  the  r i g h t  br  l e f t  of  t h e  d i v i d i n g  
bounda r y  r ; .  Using gq.  (2 .12 )  and boun d a ry  c o n d i t i o n s  ( 2 . 1 3 ) ,  i t  i s  p o s s i b l e  to  f i n d  an ap -  
p r o x i m a t e  s o l u t i o n  t o  t h e  p r e s e n t  p rob lem which  can be f o u n d ,  e . g . ,  n u m e r i c a l l y .  

The c h a r a c t e r i s t i c  f e a t u r e  of  the  p r e s e n t  p ro b l em  i s  t h a t  t h e  b o u n d a ry  l a y e r s  occupy  the  
entire flow downstream at any e ~ 0. Though the uniform correction w to flow velocity is of 
the order e 2, it is caused by the expansion of boundary layers with correction in w of the 
order e. The subsequent terms in the inner expansion introduce relative correction of the 
order of e to the computed value of w. It appears reasonable to ignore corrections of the 
order of e 2 in the outer expansion since the boundary layers occupy the entire downstream 
regions. 

3. In order to compute the steady-state velocity of diverging jets, integrate the first 
equation of (2.12) in ~ from--~ to +~, in ~ from the streamline ~ = 0 to the free boundary. 
We get 

. . . .  

0 0 - - o o  - - o o  

t S 0U0Wh+ 1 
R e h + l  - oo 0-~ r~ d(p + . . .  

�9 o ,  

E 

F k is the dividing boundary closest to ~ = 0. The term y w_~uod  ~ = 0 since w_~ 
O 

y �9 ing to the problem, uo § i as ~-+~ , therefore, w+~uod~ = ,I w+~d~ = w+~A~ where A~ is 
0 O 

= 0 accord- 

the jet thickness from the line ~ = 0 to the free boundary. The above equation can be re- 
written in the following manner using boundary conditions (2.13) 

--oo l=h 
R%~ -~  O~ jr~ dqD - -  ~ -oo ~-~ Iz dqD. 

(3~i) 
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a 
3 7~ A f~ 

o 

Fig. 2 

s 
Consider the expression J~-~d~. The derivative 3u~o/~ can be written as 2u2o~ In Uo/ 

~. For the Zhukovsky function in uo -- i0 (0 is the argument of the complex velocity) the 
following Cauchy--Riemann conditions are valid: 

Oln Uo/a~ = - -8o /a~ ,  81n Uo/O~ = 00/0% 

hence 

au~/ar = 2~ao/am. (3.2) 

We will assume that the Reynolds number Re k of the layer containing the stagnation point 
is so large that the derivative 

O~w k OUoW~ p h , ~ o  J ar r ~ o  << 

F k is the dividing boundary of the layer containing the stagnation point. When T>0, ~uow/ 
3~I~=o in view of the flow symmetry. Then the first term on the right-hand side of (3.1) 
can be neglected. With the help of Eq. (3.2), Eq. (3.1) is written in the form 

N--I 

In the plane (uZo, 0) the flow region has the shape of a rectangle 0BDP (Fig. 2a). Free 
boundaries 11 and E2 lie on BD. The point A corresponds to infinity in the free jet, points 
B and D represent infinity in thick and thin diverging jets. Boundaries F,, F2, and F3 are 
given by lines AFIB, AF2SB, and AP3D. Lines AQ, PD, and 0B denote lines ~ = 0 and 0P repre- 
sents the stagnation point. When ~ < cos y/2, it is typical for the thick jet to have a two- 
valued region AF2S for the curve u2o(~, @)I~=const. The value of the integral fu2od0 for the 
thick jet when ~ > cos y/2 and for the thin jet is equal to the area of the curvilinear quad- 
rilateral AFzBOC and AFsDPC. For the thick jet, when ~ < cos y/2, fu=od0 is equal to the dif- 

ference in the shaded areas BSC0 and AP2S. Numerical results of integrating [ u~d8 for 

a thick jet are given in the table. ~E denotes the value of ~ on the free boundary. 

In the particular case of two-layered jet 

2 Rel]@~ r . ~ e ~ ,  z 

w+~h~ (1 - -cos  V) w+~ 
If the thin jet is two-layered and Rel, Re= # ~, then 2 4 

--(7--y), whence 

Wq-oo 

Analogously for a thick jet, 

W§ 

�9 11  ~;=r J 

(1 -? cos y) 
r 

(3.3) 

dO = and 
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TABLE i 

0,0025 -- 
0,005 
0,010 
0,0i5 
0,020 
0,025 
0,030 
0,035 
0,040 
0,045 
0,05 
0,t0 
0,20 
0,40 
0,60 
0,80 
t,00 

Collision anglo 
~5 o 

),506 
3,442 
),347 
3,276 
3,220 
3,t74 
D,136 
~,t03 
~,074 
0,048 
0,026 
0,tt2 
0,222 
0,303 
0,342 
0,369 
0,393 

60 ~ 

--0,450 
--0,406 
--0,335 
--0,278 
--0,231 
--0, i90 
--0,i55 
--0,i23 
--0,095 
--0,06~ 
--0.04C 

O,tOC~ 
0,25~ 
0,37[ 
0,43] 
0,48~ 
0,52~ 

--0,387 
--0,353 
--0,298 
--0,253 
--0,2i3 
--0,i78 
--0,147 
--0,il9 
--0,093 
--0,069 
--0,047 

0,t12 
0,279 
0,436 
0,524 
0,592 
0,65~ 

When Re, >> Re2 (more viscous outer layer) in the thick jet, 

Re,. (I + cos ~) . u~dO (3.4) 

i.e., the quantity w+ 
boundaries and dividing lines in the plane (u2o, 0) (see Fig. 2b). 
viscid (Re, = ~) then w+= in this layer should be equated to zero. 
thickness of the viscous layer). 

] w+~ = 5 R% u~dO , 
~=r j 

is determined by the area of the curvilinear segments bounded by free 
If the inner layer is in- 
The w+=A~ = w+~6 (6 is the 

(3.5) 

which differs from (3.4). 

The above fact is explained as follows. When Re, >> Re2, it is possible to define two 
characteristic distances ~i and ~2 from the stagnation point along ~. At the distance ~i, 
W(~l) is close to Eq. (3.5) in the viscous layer 6 and close to zero in the inner layer. At 
the distance ~2 the correction w(~) is equalized along the diverging jet section and is 
close to Eq. (3.4). When Re~ § ~, ~I and ~ increase unboundedly. Hence, in following the 
distance ~1, when ~i -~do , we get the case (3.5) and from the distance ~2 we get the case (3.4). 

When Re2 >> Re, (more viscous inner layer) in the thick jet, 

W+~ Re 1 (l -~ cos 7) =r  

An i n t e r e s t i n g  f e a t u r e  o f  Eq.  ( 3 . 6 )  i s  t h a t  when r i s  c l o s e  t o  E,  S u~dO 

(3.6) 

is positive, 

but when ~ < ~,, where 4, is determined only from the impingement angle 7, the integral 

u2ode changes sign and the correction w to velocity uo becomes positive, i.e., the velocity 

of the thick jet increases alter collision. This result is interesting because, in a viscous 
fluid energy dissipation as a result of internal friction usually results in a reduction in 
mass rate. In the present case, there is a restructuring of the flow in such a way that the 
velocity of a thick jet happens to be greater than the inviscid flow in which there is no 
energy dissipation. Mechanically, an increase in steady-state velocity in the inner layer 
can be explained by the fact that sufficiently close to @ = 0 lines F, the convex region 
LM (see Figo I), where w increases, is much larger than the concave segment MK where w 
decreases; hence the total increment in w happens to be positive. 
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Let us determine the increment in mass flow M, momentum J, and kinetic energy E carried 
away by thick, two-layered jet, in comparison with the inviscid case. Let kt and k2 be the 
thickness, and let wt and w2 be the uniform corrections to diverging jet velocities. Con- 
servation of mass and momentum along the x axis is written as 

~ U ( I  + w~) + k2V(l + w2) = 2hU, k2U2(l + w~) 2 - -  ~ U 2 ( l  + w~ 2 = 2hU~ cos 7 .  

Eliminating kl, 

k~ = h( t  + cos ? + w l ( l - -  cos ?)/2 - -  3(1 + cos ? )wJ2) .  

It follows from (3.3) that w~ < 0 always. 
is the thickness of the thick jet. Expressions for M, J, and E are written in the form 

When w= > 0, k2 < k~ = h(l + cos y), where k~ 

w~ (i +cos  ?)~ 
-~ ) < M o ,  

w~(t+cos?)\  _ 

-~ "}<do, 

3 ~ 2 ( ' ~ c ~  

w 1 (1 - -  cos 7) 
M = k2U ( l + w~) = hU l + c o s ? +  

w 1 (i--cos~) 
] ---- k~U ~ ( l  + w2) 2 = hU 2 1 + cos %, + - 2 + 

]~2 U3 h~3(  //)1 ( l -  cOS') 
E = - 5 - - ( t  + w~) a = I + cos  ? + 2 + 

(3.7) 

The index 0 denotes corresponding characteristics of inviscid thick jet. The inequality M < 

Mo is obvious. Consider the inequality J < Jo. 

The sum of corrections w~(l -- cos y)/2 + w2(l + cos y)/2 can be written as 

sl + s~ = 2 + 2 ~ u ~ d O - -  , u~dO . 
\AF8D AF2B 

The difference in integrals S u•d8 and J ~ u~dO 
ArsD AF2B 

with a negative sign; hence s~ + s2 < 0 and J < Jo. 
determined as the sum 

is equal to the unshaded area in Fig. 2b, 

The increment in kinetic energy flux is 

from which it is seen that there are possible flow situations (thick and thin jets should be 
two-layered with sufficiently thin inner viscous layer), when the kinetic energy flux E car- 
ried by the thick jet will be greater than the corresponding flux in the inviscid case. 
Actually, the unshaded area in Fig. 2b decreases without any limit as F2 and Fs approach ~ = 

j. 
0 and u~d0 approaches the area of the curvilinear triangle AQC (see Fig. 2a), i.e., ap- 

AF2B 

p r o a c h e s  a f i n i t e  v a l u e .  E x p r e s s i o n s  f o r  m a s s  f l u x  m, momentum j ,  and  e n e r g y  e f o r  t h e  t h i n  
jet are written in the form 

w 2 (i + cos V) 
m=klU( l+wl )=hU l - - c o s ? +  2 

w~ (i + cos ~) 
] = k l U 2 ( l + w l ) 2 = h U  ~ i "  c o s ?  + 2 

wl (I - cos ~) ] (3.8) 
J ' 

+ l/)1 (1 -- 2 COS '~) ], 

klU3 h~Uu3 [ %(t  + cos V) 3~ 1 (t -- cos V)] 
e=-~-(i+wl) s= i--cos?+ 2 + ~ " " 

comparing Eqs. (3.7) and (3.8), it is possible to note that m > mo, j < jo, and e < co, where 
mo, jo, and eo are the characteristics of the thin jet in the inviscid case. Addition of E 
from (3.7) and e from (3.8) leads to 

E + e  = E o + e o + h U a [ w ~ (  l + c ~ 1 7 6  = h U ~ [ i + 2 ( ~ + s ~ ) ] ,  
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whence 
Eq-e<Eo+eo ,  

i.e., the total kinetic energy carried out by both the diverging jets is less than that 
brought in by the approaching jets by a value that is proportional to the unshaded area in 
Fig. 2b. 

The author acknowledges V. M. Menshchikov for useful suggestions during discussion of the 
problem. 
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COMPARISON OF ONE-DIMENSIONAL MODELS OF FLOWS IN BRANCHED CHANNELS 

WITH EXPERIMENTAL DATA 

S. V. Pavlov and I. K. Yaushev UDC 533.6.011 

One-dimensional modeling is presently the most popular approach to the description of 
gasdynamic flows in complicated systems containing a large number of tubes or channels coupled 
with each other. The so-called problem of the decay of an arbitrary discontinuity at a junc- 
tion acquires an important role in the investigation of the general properties of generalized 
solutions of one-dimensional equations of gasdynamics in branched systems of channels. This 
problem has been investigated theoretically in sufficient completeness in a number of reports 
for the cases of couplings of two and three channels (jumps in cross section [i, 2], local 
resistance [3], a perforated barrier [4], branched channels with parallel axes [5, 6], and an 
arbitrary tee [7, 8]), and various self-similar solutions have been constructed. To obtain a 
complete picture, however, theoretical results must be compared with experimental data, which 
has been done so far only for certain particular cases of local resistances in two coupled 
channels. In the present work such a comparison is made for a plane tee formed by the main 
channel and a side opening of the same width. 

We consider one particular case of the decay of a discontinuity, when a shock wave 
travels through quiescent gas to the branching section. Experiments of this type have been 
described sufficiently widely in the literature. As a result of the decay of the initial 
shock front a rarefaction wave is reflected in the main channel i, while in the straight 
(channel 2) and side (channel 3) branches shock waves travel, behind which contact discon- 
tinuities follow. The self-similar flow pattern obtained in the one-dimensional model for 
this typical configuration is shown in the form of an x, t wave diagram in Fig. i, where x < 
0 corresponds to the main channel at the entrance to the tee, while x > 0 corresponds to one 
of the branches at the exit from the tee, R~ is the reflected centered rarefaction wave, $2 and 
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